ignite.utils¶
Module with helper methods
Move tensors to relevant device. |
|
Apply a function on a tensor or mapping, or sequence of tensors. |
|
Apply a function on a object of input_type or mapping, or sequence of objects of input_type. |
|
Convert a tensor of indices of any shape (N, …) to a tensor of one-hot indicators of shape `(N, num_classes, …) and of type uint8. |
|
Setups logger: name, level, format etc. |
|
Setup random state from a seed for torch, random and optionally numpy (if can be imported). |
-
ignite.utils.
apply_to_tensor
(input_: Union[torch.Tensor, collections.abc.Sequence, collections.abc.Mapping, str, bytes], func: Callable) → Union[torch.Tensor, collections.abc.Sequence, collections.abc.Mapping, str, bytes][source]¶ Apply a function on a tensor or mapping, or sequence of tensors.
-
ignite.utils.
apply_to_type
(input_: Union[Any, collections.abc.Sequence, collections.abc.Mapping, str, bytes], input_type: Union[Type, Tuple[Type[Any], Any]], func: Callable) → Union[Any, collections.abc.Sequence, collections.abc.Mapping, str, bytes][source]¶ Apply a function on a object of input_type or mapping, or sequence of objects of input_type.
-
ignite.utils.
convert_tensor
(input_: Union[torch.Tensor, collections.abc.Sequence, collections.abc.Mapping, str, bytes], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False) → Union[torch.Tensor, collections.abc.Sequence, collections.abc.Mapping, str, bytes][source]¶ Move tensors to relevant device.
-
ignite.utils.
manual_seed
(seed: int) → None[source]¶ Setup random state from a seed for torch, random and optionally numpy (if can be imported).
- Parameters
seed (int) – Random state seed
-
ignite.utils.
setup_logger
(name: Optional[str] = None, level: int = 20, format: str = '%(asctime)s %(name)s %(levelname)s: %(message)s', filepath: Optional[str] = None, distributed_rank: Optional[int] = None) → logging.Logger[source]¶ Setups logger: name, level, format etc.
- Parameters
name (str, optional) – new name for the logger. If None, the standard logger is used.
level (int) – logging level, e.g. CRITICAL, ERROR, WARNING, INFO, DEBUG
format (str) – logging format. By default, %(asctime)s %(name)s %(levelname)s: %(message)s
filepath (str, optional) – Optional logging file path. If not None, logs are written to the file.
distributed_rank (int, optional) – Optional, rank in distributed configuration to avoid logger setup for workers. If None, distributed_rank is initialized to the rank of process.
- Returns
logging.Logger
For example, to improve logs readability when training with a trainer and evaluator:
from ignite.utils import setup_logger trainer = ... evaluator = ... trainer.logger = setup_logger("trainer") evaluator.logger = setup_logger("evaluator") trainer.run(data, max_epochs=10) # Logs will look like # 2020-01-21 12:46:07,356 trainer INFO: Engine run starting with max_epochs=5. # 2020-01-21 12:46:07,358 trainer INFO: Epoch[1] Complete. Time taken: 00:5:23 # 2020-01-21 12:46:07,358 evaluator INFO: Engine run starting with max_epochs=1. # 2020-01-21 12:46:07,358 evaluator INFO: Epoch[1] Complete. Time taken: 00:01:02 # ...