Source code for ignite.contrib.metrics.regression.canberra_metric
from typing import Callable, Tuple, Union
import torch
from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce
[docs]class CanberraMetric(_BaseRegression):
r"""
Calculates the Canberra Metric.
:math:`\text{CM} = \sum_{j=1}^n\frac{|A_j - P_j|}{|A_j| + |P_j|}`
where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
More details can be found in `Botchkarev 2018`_ or `scikit-learn distance metrics`_
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
- `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
.. _scikit-learn distance metrics:
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
"""
def __init__(
self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu")
) -> None:
super(CanberraMetric, self).__init__(output_transform, device)
@reinit__is_reduced
def reset(self) -> None:
self._sum_of_errors = torch.tensor(0.0, device=self._device)
def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
y_pred, y = output
errors = torch.abs(y - y_pred) / (torch.abs(y_pred) + torch.abs(y))
self._sum_of_errors += torch.sum(errors).to(self._device)
@sync_all_reduce("_sum_of_errors")
def compute(self) -> float:
return self._sum_of_errors.item()