Source code for ignite.contrib.metrics.regression.maximum_absolute_error
from typing import Tuple
import torch
from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError
[docs]class MaximumAbsoluteError(_BaseRegression):
r"""
Calculates the Maximum Absolute Error:
:math:`\text{MaxAE} = \max_{j=1,n} \left( \lvert A_j-P_j \rvert \right)`,
where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
More details can be found in `Botchkarev 2018`__.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
- `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
__ https://arxiv.org/abs/1809.03006
"""
def reset(self) -> None:
self._max_of_absolute_errors = -1 # type: float
def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
y_pred, y = output
mae = torch.abs(y_pred - y.view_as(y_pred)).max().item()
if self._max_of_absolute_errors < mae:
self._max_of_absolute_errors = mae
def compute(self) -> float:
if self._max_of_absolute_errors < 0:
raise NotComputableError("MaximumAbsoluteError must have at least one example before it can be computed.")
return self._max_of_absolute_errors