Source code for ignite.contrib.metrics.regression.maximum_absolute_error
from typing import Tuple
import torch
from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError
[docs]class MaximumAbsoluteError(_BaseRegression):
    r"""
    Calculates the Maximum Absolute Error:
    :math:`\text{MaxAE} = \max_{j=1,n} \left( \lvert A_j-P_j \rvert \right)`,
    where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
    More details can be found in `Botchkarev 2018`__.
    - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
    - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
    __ https://arxiv.org/abs/1809.03006
    """
    def reset(self) -> None:
        self._max_of_absolute_errors = -1  # type: float
    def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
        y_pred, y = output
        mae = torch.abs(y_pred - y.view_as(y_pred)).max().item()
        if self._max_of_absolute_errors < mae:
            self._max_of_absolute_errors = mae
    def compute(self) -> float:
        if self._max_of_absolute_errors < 0:
            raise NotComputableError("MaximumAbsoluteError must have at least one example before it can be computed.")
        return self._max_of_absolute_errors