Shortcuts

Source code for ignite.contrib.metrics.regression.wave_hedges_distance

from typing import Tuple

import torch

from ignite.contrib.metrics.regression._base import _BaseRegression


[docs]class WaveHedgesDistance(_BaseRegression): r""" Calculates the Wave Hedges Distance. :math:`\text{WHD} = \sum_{j=1}^n\frac{|A_j - P_j|}{max(A_j, P_j)}`, where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 """ def reset(self) -> None: self._sum_of_errors = 0.0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output errors = torch.abs(y.view_as(y_pred) - y_pred) / torch.max(y_pred, y.view_as(y_pred)) self._sum_of_errors += torch.sum(errors).item() def compute(self) -> float: return self._sum_of_errors