Source code for ignite.contrib.metrics.roc_auc
from typing import Any, Callable, Tuple
import torch
from ignite.metrics import EpochMetric
def roc_auc_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> float:
try:
from sklearn.metrics import roc_auc_score
except ImportError:
raise RuntimeError("This contrib module requires sklearn to be installed.")
y_true = y_targets.numpy()
y_pred = y_preds.numpy()
return roc_auc_score(y_true, y_pred)
def roc_auc_curve_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> Tuple[Any, Any, Any]:
try:
from sklearn.metrics import roc_curve
except ImportError:
raise RuntimeError("This contrib module requires sklearn to be installed.")
y_true = y_targets.numpy()
y_pred = y_preds.numpy()
return roc_curve(y_true, y_pred)
[docs]class ROC_AUC(EpochMetric):
"""Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC)
accumulating predictions and the ground-truth during an epoch and applying
`sklearn.metrics.roc_auc_score <http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score>`_ .
Args:
output_transform (callable, optional): a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
check_compute_fn (bool): Default False. If True, `roc_curve
<http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#
sklearn.metrics.roc_auc_score>`_ is run on the first batch of data to ensure there are
no issues. User will be warned in case there are any issues computing the function.
ROC_AUC expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence
values. To apply an activation to y_pred, use output_transform as shown below:
.. code-block:: python
def activated_output_transform(output):
y_pred, y = output
y_pred = torch.sigmoid(y_pred)
return y_pred, y
roc_auc = ROC_AUC(activated_output_transform)
"""
def __init__(self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False) -> None:
super(ROC_AUC, self).__init__(
roc_auc_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn
)
[docs]class RocCurve(EpochMetric):
"""Compute Receiver operating characteristic (ROC) for binary classification task
by accumulating predictions and the ground-truth during an epoch and applying
`sklearn.metrics.roc_curve <http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.roc_curve.html#sklearn.metrics.roc_curve>`_ .
Args:
output_transform (callable, optional): a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
check_compute_fn (bool): Default False. If True, `sklearn.metrics.roc_curve
<http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html#
sklearn.metrics.roc_curve>`_ is run on the first batch of data to ensure there are
no issues. User will be warned in case there are any issues computing the function.
RocCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence
values. To apply an activation to y_pred, use output_transform as shown below:
.. code-block:: python
def activated_output_transform(output):
y_pred, y = output
y_pred = torch.sigmoid(y_pred)
return y_pred, y
roc_auc = RocCurve(activated_output_transform)
"""
def __init__(self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False) -> None:
super(RocCurve, self).__init__(
roc_auc_curve_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn
)