Shortcuts

Source code for ignite.metrics.fbeta

from typing import Callable, Optional, Union

import torch

from ignite.metrics.metrics_lambda import MetricsLambda
from ignite.metrics.precision import Precision
from ignite.metrics.recall import Recall

__all__ = ["Fbeta"]


[docs]def Fbeta( beta: float, average: bool = True, precision: Optional[Precision] = None, recall: Optional[Recall] = None, output_transform: Optional[Callable] = None, device: Union[str, torch.device] = torch.device("cpu"), ) -> MetricsLambda: """Calculates F-beta score Args: beta (float): weight of precision in harmonic mean average (bool, optional): if True, F-beta score is computed as the unweighted average (across all classes in multiclass case), otherwise, returns a tensor with F-beta score for each class in multiclass case. precision (Precision, optional): precision object metric with `average=False` to compute F-beta score recall (Precision, optional): recall object metric with `average=False` to compute F-beta score output_transform (callable, optional): a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. It is used only if precision or recall are not provided. device (str or torch.device): specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Returns: MetricsLambda, F-beta metric """ if not (beta > 0): raise ValueError(f"Beta should be a positive integer, but given {beta}") if precision is not None and output_transform is not None: raise ValueError("If precision argument is provided, output_transform should be None") if recall is not None and output_transform is not None: raise ValueError("If recall argument is provided, output_transform should be None") if precision is None: precision = Precision( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif precision._average: raise ValueError("Input precision metric should have average=False") if recall is None: recall = Recall( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif recall._average: raise ValueError("Input recall metric should have average=False") fbeta = (1.0 + beta ** 2) * precision * recall / (beta ** 2 * precision + recall + 1e-15) if average: fbeta = fbeta.mean().item() return fbeta