Source code for ignite.metrics.recall
from typing import Callable, Sequence, Union
import torch
from ignite.metrics.metric import reinit__is_reduced
from ignite.metrics.precision import _BasePrecisionRecall
from ignite.utils import to_onehot
__all__ = ["Recall"]
[docs]class Recall(_BasePrecisionRecall):
"""
Calculates recall for binary and multiclass data.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
- `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...).
- `y` must be in the following shape (batch_size, ...).
In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of
predictions can be done as below:
.. code-block:: python
def thresholded_output_transform(output):
y_pred, y = output
y_pred = torch.round(y_pred)
return y_pred, y
recall = Recall(output_transform=thresholded_output_transform)
In multilabel cases, average parameter should be True. However, if user would like to compute F1 metric, for
example, average parameter should be False. This can be done as shown below:
.. code-block:: python
precision = Precision(average=False, is_multilabel=True)
recall = Recall(average=False, is_multilabel=True)
F1 = precision * recall * 2 / (precision + recall + 1e-20)
F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1)
.. warning::
In multilabel cases, if average is False, current implementation stores all input data (output and target) in
as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger
than available RAM.
.. warning::
In multilabel cases, if average is False, current implementation does not work with distributed computations.
Results are not reduced across the GPUs. Computed result corresponds to the local rank's (single GPU) result.
Args:
output_transform (callable, optional): a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
average (bool, optional): if True, precision is computed as the unweighted average (across all classes
in multiclass case), otherwise, returns a tensor with the precision (for each class in multiclass case).
is_multilabel (bool, optional) flag to use in multilabel case. By default, value is False. If True, average
parameter should be True and the average is computed across samples, instead of classes.
device (str or torch.device): specifies which device updates are accumulated on. Setting the metric's
device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
default, CPU.
"""
def __init__(
self,
output_transform: Callable = lambda x: x,
average: bool = False,
is_multilabel: bool = False,
device: Union[str, torch.device] = torch.device("cpu"),
):
super(Recall, self).__init__(
output_transform=output_transform, average=average, is_multilabel=is_multilabel, device=device
)
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
self._check_shape(output)
self._check_type(output)
y_pred, y = output[0].detach(), output[1].detach()
if self._type == "binary":
y_pred = y_pred.view(-1)
y = y.view(-1)
elif self._type == "multiclass":
num_classes = y_pred.size(1)
if y.max() + 1 > num_classes:
raise ValueError(
f"y_pred contains less classes than y. Number of predicted classes is {num_classes}"
f" and element in y has invalid class = {y.max().item() + 1}."
)
y = to_onehot(y.view(-1), num_classes=num_classes)
indices = torch.argmax(y_pred, dim=1).view(-1)
y_pred = to_onehot(indices, num_classes=num_classes)
elif self._type == "multilabel":
# if y, y_pred shape is (N, C, ...) -> (C, N x ...)
num_classes = y_pred.size(1)
y_pred = torch.transpose(y_pred, 1, 0).reshape(num_classes, -1)
y = torch.transpose(y, 1, 0).reshape(num_classes, -1)
# Convert from int cuda/cpu to double on self._device
y_pred = y_pred.to(dtype=torch.float64, device=self._device)
y = y.to(dtype=torch.float64, device=self._device)
correct = y * y_pred
actual_positives = y.sum(dim=0)
if correct.sum() == 0:
true_positives = torch.zeros_like(actual_positives)
else:
true_positives = correct.sum(dim=0)
if self._type == "multilabel":
if not self._average:
self._true_positives = torch.cat([self._true_positives, true_positives], dim=0) # type: torch.Tensor
self._positives = torch.cat([self._positives, actual_positives], dim=0) # type: torch.Tensor
else:
self._true_positives += torch.sum(true_positives / (actual_positives + self.eps))
self._positives += len(actual_positives)
else:
self._true_positives += true_positives
self._positives += actual_positives