Source code for ignite.metrics.top_k_categorical_accuracy
from typing import Callable, Sequence, Union
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["TopKCategoricalAccuracy"]
[docs]class TopKCategoricalAccuracy(Metric):
"""
Calculates the top-k categorical accuracy.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
"""
def __init__(
self,
k: int = 5,
output_transform: Callable = lambda x: x,
device: Union[str, torch.device] = torch.device("cpu"),
) -> None:
super(TopKCategoricalAccuracy, self).__init__(output_transform, device=device)
self._k = k
@reinit__is_reduced
def reset(self) -> None:
self._num_correct = torch.tensor(0, device=self._device)
self._num_examples = 0
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
sorted_indices = torch.topk(y_pred, self._k, dim=1)[1]
expanded_y = y.view(-1, 1).expand(-1, self._k)
correct = torch.sum(torch.eq(sorted_indices, expanded_y), dim=1)
self._num_correct += torch.sum(correct).to(self._device)
self._num_examples += correct.shape[0]
@sync_all_reduce("_num_correct", "_num_examples")
def compute(self) -> Union[float, torch.Tensor]:
if self._num_examples == 0:
raise NotComputableError(
"TopKCategoricalAccuracy must have at least one example before it can be computed."
)
return self._num_correct.item() / self._num_examples